A Novel Method for Automatic Extraction of Apparent Diffusion Coefficients in Breast MRI
نویسندگان
چکیده
Introduction Diffusion weighted (DW) MRI—and in particular the apparent diffusion coefficient (ADC)—shows potential for improving the characterization and classification of enhancing breast lesions identified using dynamic contrast-enhanced (DCE) MRI. Nevertheless, to date there does not exist a well defined and objective method for computing a representative ADC value for such lesions. Typically an average ADC is computed for a manually selected region of interest (ROI) [1]. This is problematic for two reasons. Firstly the choice of ROI is subjective. Differences in ROI selection between individuals, as well as the reproducibility of selection for a given individual, can lead to variation in the mean ADC. In addition ROIs are often defined to be circular or elliptical which imposes an arbitrary geometry on the ROI [2]. Secondly, given the heterogeneity in breast lesions, an ensemble average of ADC may not provide a truly representative value. It is assumed that a representative ADC will be present in the area of neovascularisation, as indicated by rapid contrast enhancement. In order to improve the objectivity, reproducibility and efficiency of representative ADC computation, we propose an automated method based on the selection of hypo-intense areas on the ADC map corresponding to regions of greatest initial contrast enhancement identified in the DCE-MRI data. We also present an evaluation of the method using routine clinical data.
منابع مشابه
Comparison between MRS and DWI in MRI of breast cancer
Introduction: Breast cancer is the most common cancer in women and is the second leading cause of cancer death (after lung cancer) in people throughout the world. Today, MRI is being used because of the limitations of x-ray mammography to detect breast cancer. Non-contrast sequences were associated to CE sequences in a breast MRI protocol for the sake of appraising morphologic ...
متن کاملDifferentiation of benign and malignant breast lesions by apparent diffusion coefficient value in mass and non-mass lesions
Background: Diffusion-weighted imaging (DWI) is one of methods in evaluation of breast lesions. We aimed to investigate the apparent diffusion coefficient (ADC) values in breast tumors and their accuracy in differentiating benign versus malignant lesions. Methods: In this cross-sectional study, 72 patients with 88 breast lesions were investigated by 1.5-T breast MRI from 2015 to 2017 in Athari...
متن کاملBreast abnormalities segmentation using the wavelet transform coefficients aggregation
Introduction: Breast cancer is the most common cancer among women in the world. The automatic detection of masses in digital mammograms is a challenging task and a major step in the development of breast cancer CAD systems. In this study, we introduce a new method for automatic detection of suspicious mass candidate (SMC) regions in a mammogram. Methods: Mammography is widely used for the early...
متن کاملAn Efficient Framework for Accurate Arterial Input Selection in DSC-MRI of Glioma Brain Tumors
Introduction: Automatic arterial input function (AIF) selection has an essential role in quantification of cerebral perfusion parameters. The purpose of this study is to develop an optimal automatic method for AIF determination in dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) of glioma brain tumors by using a new preprocessing method.Material and Methods: For this study, ...
متن کاملNeural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images
Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010